Resistance Training Improves Sleep and Anti-Inflammatory Parameters in Sarcopenic Older Adults: A Randomized Controlled Trial.

International journal of environmental research and public health. 2022;19(23)
Full text from:

Other resources

Plain language summary

Sleep is a behavioural state that is characterised by relative immobility and reduced responsiveness and can be distinguished from coma or anaesthesia by its rapid reversibility. Sleep has a number of functions, which include metabolism modulation and the repair of organic tissue. The aim of this study was to investigate the effects of a 12-week resistance exercise training (RET) protocol on subjective and objective sleep parameters in older individuals with sarcopenia and the possible role of inflammation status in this process. This study was a randomised, placebo-controlled, parallel-group study. Participants were randomly assigned to one of the two groups; RET group or control group. Results showed that a 12-week RET protocol simultaneously improved muscle strength. In addition to the increase in overall subjective sleep quality, there was also a reduction in sleep latency, apnoea-hypopnea index, and insomnia severity, as well as an increase in deeper stage 3 sleep (slow-wave sleep) in the RET group in comparison with the CTL group. Authors conclude that future studies are necessary to elucidate how different age groups and genders, with and without sarcopenia, can present specific muscle and sleep responses to potentially anti-inflammatory interventions, such as physical exercise.

Abstract

Sleep and exercise have an important role in the development of several inflammation-related diseases, including sarcopenia. Objective: To investigate the effects of 12 weeks of resistance exercise training on sleep and inflammatory status in sarcopenic patients. Methods: A randomized controlled trial comparing resistance exercise training (RET) with a control (CTL) was conducted. Outcomes were obtained by physical tests, polysomnography, questionnaires, isokinetic/isometric dynamometry tests, and biochemical analysis. Results: Time to sleep onset (sleep latency) was reduced in the RET group compared to the CTL group (16.09 ± 15.21 vs. 29.98 ± 16.09 min; p = 0.04) after the intervention. The percentage of slow-wave sleep (N3 sleep) was increased in the RET group (0.70%, CI: 7.27−16.16 vs. −4.90%, CI: 7.06−16.70; p = 0.04) in an intention to treat analysis. Apnea/hour was reduced in the RET group (16.82 ± 14.11 vs. 7.37 ± 7.55; p = 0.001) and subjective sleep quality was improved compared to the CTL (−1.50; CI: 2.76−6.14 vs. 0.00; CI: 1.67−3.84 p = 0.02) in an intention-to-treat analysis. Levels of interleukin-10 (IL-10) (2.13 ± 0.80 vs. 2.51 ± 0.99; p < 0.03) and interleukin-1 receptor antagonist (IL-1ra) (0.99 ± 0.10 vs. 0.99 ± 0.10 ng/mL; p < 0.04; delta variation) were increased in the RET group. Conclusions: RET improves sleep parameters linked to muscle performance, possibly due to an increase in anti-inflammatory markers in older sarcopenic patients.

Lifestyle medicine

Fundamental Clinical Imbalances : Hormonal ; Immune and inflammation
Patient Centred Factors : Mediators/Sleep
Environmental Inputs : Physical exercise
Personal Lifestyle Factors : Sleep and relaxation ; Exercise and movement
Functional Laboratory Testing : Blood ; Imaging

Methodological quality

Jadad score : 3
Allocation concealment : Yes

Metadata